Eigenvalues for double phase variational integrals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Characterization for Eigenvalues of Dirac Operators

In this paper we give two diierent variational characterizations for the eigenvalues of H + V where H denotes the free Dirac operator and V is a scalar potential. The rst one is a min-max involving a Rayleigh quotient. The second one consists in minimizing an appropriate nonlinear functional. Both methods can be applied to potentials which have singularities as strong as the Coulomb potential.

متن کامل

Variational Principles for Eigenvalues of Nonlinear Eigenproblems

Variational principles are very powerful tools when studying self-adjoint linear operators on a Hilbert spaceH. Bounds for eigenvalues, comparison theorems, interlacing results and monotonicity of eigenvalues can be proved easily with these characterizations, to name just a few. In this paper we consider generalization of these principles to families of linear, self-adjoint operators depending ...

متن کامل

Double Integrals and Iterated Integrals

Corresponding material in the book: Section 15.2, 15.3. Note: We are omitting the question types from the book that require three-dimensional visualization, i.e., those that require sketching figures in three dimensions to compute volumes. What students should definitely get: The procedure for computing double integrals over rectangles using iterated integrals, the procedure for computing doubl...

متن کامل

Boundary regularity results for variational integrals

We prove partial Hölder continuity for the gradient of minimizers u ∈W (Ω,R ), Ω ⊂ R a bounded domain, of variational integrals of the form

متن کامل

Variational Characterization of Eigenvalues of Nonlinear Eigenproblems

In this paper we survey variational characterizations of eigenvalues of nonlinear eigenproblems, i.e. generalizations of Rayleigh’s principle, the minmax characterization of Poincaré, and the maxmin characterization of Courant, Fischer and Weyl to eigenvalue problems containing the eigenparameter nonlinearly. In this note we consider the nonlinear eigenvalue problem

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)

سال: 2015

ISSN: 0373-3114,1618-1891

DOI: 10.1007/s10231-015-0542-7